Neumann, "Dependent wild bootstrap for the empirical process," Journal of Time series Analysis , vol. Marcon, S. Traissac, F. Puech, and G. Marcon, I. Scotti, B.

Herault, V. Rossi, and G. Lagache, Olivo-Marin J. Lang and E.

- Additional information.
- Strong mixing conditions - Encyclopedia of Mathematics?
- Out on the Tiles?

Traissac, and G. Marcon, B. Baraloto, and G. Doukhan, O. Klesov, and G. Doukhan, J. Fermanian, and G. Pro , vol. Lang, S. Louhichi, and B.

- Št. navedb na leto.
- Illusions of Sanity?
- Rites mystiques antiques. Chap 6/12. Les mystères mithriaques (Rites mystiques antiques, une brève histoire de la Franc-Maçonnerie) (French Edition)!
- Independence - Heartland style teen adventure romance for horse lovers (The Holiday Series Book 4).
- Theory of Probability & Its Applications.
- A Bit of History: Spice of Life Series, Novella #2.

Fields , vol. Bardet, P. Lang, and N. Lang, and D. Hurvich, G. Lang, and P. Surgailis, P. Lang, and M. Chaouche, G. Doukhan, and G. Lang, "Asymptotics of empirical processes of linear random fields with long-range dependence.

### Account Options

Roueff and G. Stochastic models with infinite variance. With applications to statistics. MR [32] Y. An invariance principle for fractional Brownian sheets. USA , no. Interface 4 , no.

**grandaweek.co.uk/thomas-procedures-in-facial-plastic-surgery-non-invasive.php**

## Dependence Modeling

References [1] Kenneth S. Alexander and Ronald Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance , Ann.

Bolthausen, On the central limit theorem for stationary mixing random fields , Ann. MR 84c [5] R. MR 93a [7] N. Dudley, Central limit theorems for empirical measures , Ann. Greenwood, Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes , Ann.

MR 88eb [16] P. Heyde, Martingale limit theory and its application , Academic Press Inc. MR 83a [17] E.

## (PDF) On weak dependence conditions for Poisson autoregressions | Dag Tjøstheim - eventhyfibno.gq

Hannan, The central limit theorem for time series regression , Stochastic Process. Suivi d'une note de M. MR 88j [30] Shigeo Takenaka, Integral-geometric construction of self-similar stable processes , Nagoya Math. MR 93d [31] Aad W. MR 97g [32] Y.